•  Global Renewable News

How to Improve the Economic Viability of Renewable Resources

by Dave Bryant, CTC Global

Leveraging modern conductors can improve the economic viability of renewable resources projects and enable the power grid to handle added electrical current. Renewable energy resources are often located miles away from local demand centers. Wind farms, for instance, are generally found far from city limits, located on windy mountaintops or rural, prairie lands. The electrical resistance of conventional conductors can reduce the amount of energy actually delivered, at a great loss.

New sources of generation typically require new tie lines to deliver the energy to the grid and, in many cases, the grid itself has to be upgraded to handle additional loads. In either situation, the use of high-capacity, highly-efficient modern conductors, can reduce overall project costs and help deliver more energy using less generation compared to conventional steel-reinforced ACSR conductors. The modern high-performance High Capacity Energy Efficient (HCEE) conductors use a high-strength, light-weight carbon fiber composite core that is substantially stronger than its steel counterpart. The added strength allows longer spans between fewer and/or shorter structures, which can reduce upfront capital costs and minimize environmental impact. The high capacity conductor's composite core's lighter weight allows the incorporation of additional conductive aluminum, using compact trapezoidal strands, without any overall weight penalty. The increased aluminum content decreases conductor resistance, which can reduce line losses by 30 percent or more. The composite core's very low coefficient of thermal expansion also prevents conductor sag when operated at higher temperatures under peak load conditions.  This serves to improve grid reliability by maintaining safe ground clearances.

Improving Grid Capacity
Although new feeder lines typically deliver power from renewable resources directly to the grid, often times the existing grid power lines are not capable of carrying additional current due to thermal sag. As transmission lines carry more current, their electrical resistance causes the lines to heat up. This heat causes linear expansion of the conventional steel core, which increases line sag. Excessive line sag can cause dangerous arching or flashovers to adjacent or under-built wires, vegetation, or other structures. It can also cause outages. A high-performance HCEE conductor of the same diameter and weight can be used to replace existing conventional ACSR conductors to increase line capacity and reduce line losses without increasing line sag. One example of a successful replacement included the replacement of 10.5 circuit miles of ACSR Dove-sized conductors of a transmission line in Spain, with an ACCC equivalent. The plan included the addition of 80 new one megawatt turbines for a total of 160 MW. Using HCEE conductors allowed this transmission tie line project to double the capacity of its existing 66 kV line, without having to replace, lengthen, or reinforce any existing structures. With an anticipated load factor of 35 percent, the estimated savings from line loss reductions alone were $26,507,000 over the first 10 years. The ability to re-use existing lattice structures also saved millions of dollars on upfront capital costs, as well as several months of construction time and potential revenue loss.

Increased Power
In addition to reducing capital costs, a high-performance HCEE conductor's reduced line losses can enable the delivery of more energy from a given asset. This can amount to tens of millions of dollars in increased revenue over a project's anticipated service life.  Conversely, a reduction in line losses can also reduce upfront capital costs by delivering the same amount of power with less upfront generation investment. Unlike a typical base-load coal or nuclear plants, where a specific output can generally be recognized, renewable projects often have much greater operating windows, where the electrical current generated can vary widely. Under these wide and often transient conditions, conventional ACSR conductors have substantial limitations that relate to ultimate load carrying capability, thermal sag, and exponentially increasing line losses.

A high capacity conductor is ideal for renewable resources projects due to its high-capacity and low-sag characteristics. Its high-strength, dimensional stability, and added aluminum content also make it well suited for upgrading existing transmission lines to deliver up to twice the power of conventional ACSR conductors of the same diameter and weight. This offers utilities a cost-effective means of upgrading existing transmission lines without having to make expensive and time-consuming structural upgrades to accommodate new sources of renewable energy.

HCEE conductors were first commercialized in 2005 and, since that time, over 42,000 kilometers of conductor have been deployed to more than 450 project sites in over 40 countries. In November of 2016, the HCEE conductor was certified by SCS Global Services for its improved energy efficiency that can provide further economic and CO2 emission reduction benefits and, in some cases, additional Renewable Energy Credits (REC's).

Dave Bryant
CTC Global

Dave Bryant is Director of Technology at CTC Global Corporation in Irvine, California. Dave was a co-inventor of the patented ACCC conductor and ancillary hardware components. His 35 year background as a design engineer focused on the use of advanced composite materials in numerous industrial applications which helped expedite the development, testing, and commercialization of the ACCC conductor.

Most consulted news